If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+18x=63
We move all terms to the left:
8x^2+18x-(63)=0
a = 8; b = 18; c = -63;
Δ = b2-4ac
Δ = 182-4·8·(-63)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{65}}{2*8}=\frac{-18-6\sqrt{65}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{65}}{2*8}=\frac{-18+6\sqrt{65}}{16} $
| 2x-35=-17 | | 1/6=4➗w | | 5(2x–3)=x+11+8x | | 5b-3=-3b+13 | | –9p=8−10p | | -4.9=c-12 | | (x+68)+(x+58)+70=180 | | 0.50x=175 | | 4x+72+x=180 | | 2x+3x-7x+19-27=12 | | x/8)+3=19 | | 5−6n=59 | | Y=7X4x | | 27/15=72/a* | | 3x^2+14x^2+17x+6=0 | | 2.7x-2.5=-6.75 | | 5x+5+7x+5=56 | | 12=1/5v | | –8+9r=1+8r | | 2(5)+2(2x)=5(2x) | | s=8/9 | | 5x+18=x-14 | | 3(x+4)+4=34 | | ½(3x-1)=⅓(-6x-9) | | (12x-15)=(8x+33) | | 4b+6=3b+12 | | 6.96=x-5.2 | | -2(1+8x)-2=14+2x | | 2x+-4=12-2x | | x=(-15)=-54 | | 2x+68=60 | | 90+0.50x=30+0.80x |